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Abstract

Transactive response DNA binding protein 43 (TDP-43), an alternative-splicing regu-

lator, can specifically bind long UG-rich RNAs, associated with a range of neurode-

generative diseases. Upon binding RNA, TDP-43 undergoes a large conformational

change with two RNA recognition motifs (RRMs) connected by a long linker

rearranged, strengthening the binding affinity of TDP-43 with RNA. We extend the

equally weighted multiscale elastic network model (ewmENM), including its Gaussian

network model (ewmGNM) and Anisotropic network model (ewmANM), with the

multiscale effect of interactions considered, to the characterization of the dynamics

of binding interactions of TDP-43 and RNA. The results reveal upon RNA binding a

loss of flexibility occurs to TDP-43's loop3 segments rich in positively charged resi-

dues and C-terminal of high flexibility, suggesting their anchoring RNA, induced fit

and conformational adjustment roles in recognizing RNA. Additionally, based on

movement coupling analyses, it is found that RNA binding strengthens the interac-

tions among intra-RRM β-sheets and between RRMs partially through the linker's

mediating role, which stabilizes RNA binding interface, facilitating RNA binding effi-

ciency. In addition, utilizing our proposed thermodynamic cycle method combined

with ewmGNM, we identify the key residues for RNA binding whose perturbations

induce a large change in binding free energy. We identify not only the residues

important for specific binding, but also the ones critical for the conformational

rearrangement between RRMs. Furthermore, molecular dynamics simulations are also

performed to validate and further interpret the ENM-based results. The study dem-

onstrates a useful avenue to utilize ewmENM to investigate the protein-RNA interac-

tion dynamics characteristics.
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1 | INTRODUCTION

Transactive response DNA-binding protein 43 (TDP-43), an

alternative-splicing regulator, plays multiple roles in pre-mRNA matu-

ration, microRNA processing, and mRNA turnover, stabilization and

transport.1 TDP-43 can specifically recognize and bind long UG-rich

RNA sequences,2 which is associated with a variety of neurodegener-

ative diseases, such as amyotrophic lateral sclerosis (ALS) and

frontotemporal lobar degeneration (FTLD).3

TDP-43 was first found as a DNA-binding protein,4 and later also

as an RNA-binding protein and now was known to prefer to bind

RNA.5 TDP-43 can specifically recognize and bind UG-rich RNAs or
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TG-rich DNAs by the RNA-binding domain (RBD).6 Researchers have

found that TDP-43 undergoes a large conformational change upon

binding to its target RNA, and some perturbations to the structure or

dynamics of TDP-43 would be propagated through the binding inter-

face, leading to significant changes in RNA-binding affinity and speci-

ficity.7–9 Therefore, exploring the dynamics of binding interactions of

TDP-43 and RNA is helpful for understanding the mechanism of spe-

cific recognition and interactions between them and for developing

therapeutic strategies targeting TDP-43 for neurodegenerative

diseases.

The structure of TDP-43 in complex with RNA has been solved

by nuclear magnetic resonance (NMR) spectroscopy,9 as shown in

Figure 1 for its representative structure with the average lowest root

mean square deviation (RMSD) from the other models. TDP-43 con-

sists of N-terminal, C-terminal and an RBD composed of two tandem

RNA recognition motifs (RRM1 and RRM2) connected by a 14-amino

acid linker. The linker confers TDP-43's adaptability to nucleic acids

by allowing different orientations of the two RRMs.10,11 Unlike the

typical RRM containing four-stranded antiparallel β-sheets, such

as hnRNP-A112 and Hud,13 each RRM of TDP-43 has a

β1-α1-β2-β3-α2-β4-β5 order of secondary structure elements with an

additional β-sheet (β4), extending the β-sheet surface accessible for

RNA binding. The intra-RRM β-sheets and inter-RRM interface β2 and

β4 form hydrophobic cores, respectively.9,14 TDP-43 adopts a posi-

tively charged groove composed of β-sheets, loop1s, loop3s, linker,

and C-terminal (the positive electrostatic potential mainly provided by

loop1 and loop3 in each RRM) to bind UG-rich repeats. RRM loop1

and loop3 protrude to RNA forming electrostatic and hydrogen-

bonding interactions with RNA, β-sheets form the main RNA binding

surface where the two highly conserved segments denoted as ribonu-

cleoprotein domains (RNPs) are located (with RNP1 mainly situated at

β3 and RNP2 at β1), and C-terminal is necessary for RNA specific rec-

ognition. For RRMs, they can move relatively independently in the

RNA-free state, and upon RNA binding they adopt a fixed and suitable

orientation to each other, of which RRM1 plays an important role in

binding with RNA compared with RRM2 partially due to the longer

loop3 in RRM1.8 The conformational rearrangement between RRMs

strengthens the binding affinity of TDP-43 with RNA.15

Most of the experimental researches focus on the key residues

involved in the complex formation of TDP-43 and RNA. Using

electro-mobility shift assay (EMSA), Baralle et al. revealed that RRM1

plays a more important role in DNA/RNA binding compared with

RRM2 that however is needed for the correct complex formation as a

supporting role.16 Later, they found that besides β-sheets, loop1s, and

loop3s connecting β-sheets and helices are also crucial for nucleic acid

recognition by providing specificity via cross-linking and immunopre-

cipitation assay.17 Utilizing EMSA, Chen et al. observed that mutating

some linker residues to glutamic acid creates the strong repulsive

electrostatic interactions between TDP-43 and nucleic acid,

completely abolishing the RNA binding capacity of TDP-43.18 Theo-

retically, to our knowledge there are only several studies on TDP-43

itself. Through molecular dynamics (MD) simulations, Chiang et al. rev-

ealed that negatively charged Asp169Gly mutation located at β-turn

connecting β4 and β5 in RRM1 induces a local conformational change,

increasing the hydrophobic interactions in RRM1 core.19 Still with

MD method, Prakash et al. studied the unfolding process of TDP-43,

observing that RRM1 has a different unfolding pathway from

RRM2.14

MD simulation is a time-consuming method especially for the

large-size systems. In order to address the issue, the coarse-grained

elastic network models (ENMs) have been proposed for investigating

the function-related motions of biomacromolecules.20 Gaussian net-

work model (GNM)21,22 and anisotropic network model (ANM)23 are

the two mostly used ENM methods. Generally, low frequency motion

modes calculated from ENM represent the large-scale collective

motions usually relevant to protein functions.24 Originally, Tirion et al.

developed the conventional ENM method where a protein structure

is modeled as a coarse-grained elastic network in which all the

pairwise residues within a given cutoff distance are considered to

interact with each other and are connected by harmonic springs with

F IGURE 1 Reference structure of TDP-43-RNA complex determined by NMR spectroscopy (PDB ID: 4BS2). For clarity, the top-view and
bottom-view of the structure are shown, with the linker (cyan) connecting RRM1 and RRM2, and five β-sheets (yellow), two α-helices (magenta)
and five loops (cyan) constituting each RRM structure, two ends being C-terminal and N-terminal (blue) and RNA (orange) lying on the β-sheet
surface
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a uniform force constant.20 Later, considering the long-range effect

of inter-residue interactions, Yang et al. proposed a parameter-free

ENM (pfENM) where all the residues are considered to interact with

each other with the force constant of the spring connecting two resi-

dues inversely proportional to the second power of inter-residue dis-

tance.25 Hinsen adopted an exponential decay function dependent

of the square of inter-residue distance to describe the force con-

stant.26 As we know, in biomolecules different kinds of interactions,

such as covalent, Van der Waals, hydrophobic, and electrostatic

interactions have their individual characteristic action ranges instead

of a single one. Thus, with the multiscale feature of interactions con-

sidered, the multiscale ENM (mENM) was introduced by Wei et al.

based on their previously proposed flexibility rigidity index (FRI)

method,27–30 where the force constant is represented as the sum of

multiple weighted kernel functions.31 The mENM is able to capture

the multiscale behavior and gives rise to a significant improvement

in B-factor prediction over the conventional ENM methods. Our

extension of the mGNM to the dynamics analyses for a dataset con-

taining 77 nonredundant RNAs achieves a remarkable improvement

in residue flexibility prediction compared with the conventional

GNM and pfGNM, especially for those loosely packed RNAs.32 How-

ever, in mENM the weight optimization by the least squares method

only considers the diagonal elements of Kirchhoff matrix or Hessian

matrix, which means that the details of pairwise interactions are

neglected in this process. When adopting equal weights in mENM

(denoted as ewmENM), we achieve a better balance of performance

in residue flexibility calculation and fluctuation cross-correlation cal-

culation.33 Additionally, based on the conventional GNM, our group

developed a thermodynamic cycle method to identify the key resi-

dues whose mutations cause a large change in binding free energy.34

The method is able to identify the key residues associated not only

with the ligand binding, but also with the allosteric transition coupled

with the binding.35,36

In this work, considering the advantage of ewmENM in rep-

roducing function-related protein dynamics, we extend ewmENM, as

an application, to interpret the effect of RNA binding on the dynamics

of TDP-43. In addition, combined with ewmGNM, the thermodynamic

cycle method is utilized to identify the key residue in TDP-43, which

are functionally indispensable for RNA specific recognition and

binding.

2 | METHODS AND MATERIALS

2.1 | Equally weighted multiscale ENM

Different from the conventional cutoff-based ENM20 and the

parameter-free ENM (pfENM) which adopts a distance-dependent

spring constant set,25 the equally weighted multiscale ENM (ewmENM)

utilizes multiple kernel functions to represent inter-residue interactions,

considering the multiscale effect of the interactions.33

2.1.1 | Equally weighted multiscale Gaussian
Network Model (ewmGNM)

In ewmGNM33 originated from mGNM,31 a biomacromolecule is

modeled as a coarse-grained elastic network where residues are rep-

laced by several nodes (here Cα atom for protein residue and P atom

for RNA nucleotide) and the force constant of springs connecting two

nodes is represented as the sum of multiple kernel functions with

equal weights. Thus, in a nutshell, the B-factor prediction of the ith

node of a biomolecule consisting of N nodes can be expressed as22,37

Bi / Γ�1
� �

ii, ð1Þ

where Γ�1
� �

ii is the ith diagonal element of the matrix inverse of the

Kirchhoff matrix, which can be written as

Γij Φð Þ¼
�Φ R0

ij ;η
� �

, if i≠ j

�PN
j,j≠ iΓij Φð Þ, if i¼ j

8<
: , ð2Þ

where the kernel function Φ representing inter-residue interactions

adopts an exponential form in the following with the interactions

exponentially decreasing with increasing distances between nodes.

Φ R0
ij ;η,κ

� �
¼ e� R0

ij =ηð Þκ , κ ≥0 ð3Þ

where Rij
0 is the equilibrium distance between the ith and jth nodes,

and the parameters η and ĸ control the decay extent. Thus, the

corresponding Kirchhoff matrix of the nth kernel function can be

described as

Γn½ �ij ¼
�Φn R0

ij ;ηn, κn
� �

, if i≠ j

�PN
j,j≠ i Γn½ �ij, if i¼ j

8<
: : ð4Þ

Here, two kernel functions with equal weights are adopted. Thus,

the total Kirchhoff matrix in Equation (2) can be written as

Γ¼
X2
n¼1

Γn: ð5Þ

The mean square fluctuation (MSF) of the ith node and the fluctua-

tion cross-correlation between the ith and jth nodes are calculated,

respectively by

⟨ ΔRi �ΔRið Þ⟩/ Γ�1
� �

ii ð6Þ

⟨ ΔRi �ΔRj

� �
⟩/ Γ�1

� �
ij: ð7Þ

The pseudoinverse of Kirchhoff matrix can be decomposed as

Γ�1 ¼UΛ�1UT ¼
XN
k¼2

uk �uTk
λk

, ð8Þ
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where U is an orthogonal matrix whose columns uk are the eigenvec-

tors of Γ, and Λ is a diagonal matrix with the diagonal λi being the

eigenvalues of Γ.

2.1.2 | Equally weighted multiscale Anisotropic
Network Model (ewmANM)

In contrast to isotropic GNM, ANM can provide not only the ampli-

tudes of residue fluctuations, but also their directions. In ewmANM33

originated from mANM,31 the dynamical properties of a molecule are

determined by a Hessian matrix H whose element is a submatrix with

size of 3 � 3. The Hessian matrix associated with the nth kernel func-

tion can be written as

Hn½ �ij ¼
hn½ �ij, if i≠ j

�PN
j,j≠ i hn½ �ij, if i¼ j

(
, ð9Þ

where the local 3 � 3 Hessian matrix can be described as

hn½ �ij ¼�
Φn R0

ij ;ηn
� �
R0
ij

� �2

xi�xj
� �

xi�xj
� �

xi�xj
� �

yi�yj
� �

xi�xj
� �

zi� zj
� �

yi�yj
� �

xi�xj
� �

yi�yj
� �

yi�yj
� �

yi�yj
� �

zi� zj
� �

zi� zj
� �

xi�xj
� �

zi� zj
� �

yi�yj
� �

zi� zj
� �

zi� zj
� �

2
64

3
75:

ð10Þ

The MSF of the ith node and the cross-correlation between the ith

and jth nodes can be calculated, respectively by

⟨ ΔRi �ΔRið Þ⟩/ H�1
3i�2,3i�2þH�1

3i�1,3i�1þH�1
3i,3i

� �
ð11Þ

⟨ ΔRi �ΔRj

� �
⟩/ H�1

3i�2,3j�2þH�1
3i�1,3j�1þH�1

3i,3j

� �
: ð12Þ

The pseudoinverse of Hessian matrix can be decomposed as

H�1 ¼UΛ�1UT ¼
X3N
k¼7

uk �uTk
λk

, ð13Þ

where U is an orthogonal matrix whose columns uk are the eigenvec-

tors of H, and Λ is a diagonal matrix with the diagonal λi being the

eigenvalues of H. The cross-correlation is normalized as

Cij ¼ ⟨ΔRi �ΔRj⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ ΔRið Þ2⟩ � ⟨ ΔRj

� �2⟩q : ð14Þ

The values of Cij range from �1 to 1. The positive values indi-

cate that the residues move in the same direction, and the negative

ones indicate that they move in the opposite direction. The higher

the absolute value, the stronger the correlation between the two

nodes. The zero value indicates no correlations between residue

motions.

2.1.3 | Optimization of parameters in ewmENM

It is important to obtain a set of suitable parameters in ewmENM,

which in this work is determined through maximizing the Pearson cor-

relation coefficient (PCC) between experimental residue MSFs and

theoretical residue MSFs calculated from ewmENM by systematically

searching the parameter set {η1, κ1; η2, κ2} in the range of {1–30, 1–

12; 1–20, 1–12} with step size 1.32,33 The optimization process is

shown in Figure S1. The PCC is defined as

PCC¼

PN
i¼1

MSFTi � MSFT
� �

MSFEi � MSFE
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

MSFTi � MSFT
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

MSFEi � MSFE
� �2

s , ð15Þ

where MSFi
T and MSFi

E are the MSFs of the ith node calculated by

ewmENM (Equation (6) or (11)) and from the NMR structure ensem-

ble, respectively, and MSFT and MSFE are the corresponding mean

values over all nodes. The PCC value ranges from �1 to 1, and a larger

PCC value means the theoretically predicted residue flexibility by

ewmENM is closer to the experimental values obtained from the

NMR structure ensemble.

2.2 | ewmGNM-based thermodynamic cycle
method

The thermodynamic cycle method based on the conventional GNM

was proposed by us to identify the key residues involved in protein-

ligand interactions and the coupled allosteric transitions.35,36 Here, con-

sidering the advantage of ewmENM in reproducing function-related

protein dynamics, we develop the ewmGNM-based thermodynamic

cycle method to identify the key residues whose mutations result in a

significant change in binding free energy of protein with ligand.

As illustrated in Figure 2, ΔG1 and ΔG2 are binding free energies

of wild-type and mutant proteins with RNA, respectively. Because of

the complexity of protein-RNA interactions, it is very difficult to calcu-

late directly ΔG1 and ΔG2. Therefore, a thermodynamic cycle is intro-

duced to calculate the change in binding free energy. The two

unphysical processes are supposed, TDP-43 ! TDP-430 and

F IGURE 2 Thermodynamic cycle diagram. ΔG1 and ΔG2 are the
binding free energies of wild-type and mutant proteins TDP-430

binding with RNA, respectively, and ΔG3 and ΔG4 are the binding free
energy changes caused by a residue perturbation to the protein TDP-
43 and complex, respectively
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complex ! complex'. When a residual perturbation is introduced to

the protein and complex, the free energy changes involved in the two

processes are represented as ΔG3 and ΔG4, respectively. In physics,

free energy is a state variable that only depends on the initial and final

states. Therefore, the change in binding free energy caused by a resi-

due mutation is

ΔΔG¼ΔG2�ΔG1 ¼ ΔG4�ΔG3: ð16Þ

Here, the residue mutation is introduced through reducing the force

constants of all the springs connecting to the mutated residue. For a

certain pair of the ith and jth residues, which form a contact both in

the receptor and complex structures, the perturbation of the force

constant γij, we assume, will lead to the approximately same change of

the potential energy (i.e., ΔU3 ≈ ΔU4), so that the ΔΔG is only related

with the entropy change. According to Equation (16), the change of

binding energy ΔΔG is calculated as

ΔΔG¼ �T ΔS4�ΔS3ð Þ: ð17Þ

According to statistical physics, the vibration entropy of the system

can be written as

S¼ ⟨H⟩�F
T

¼ 1
T

3
2

N�1ð ÞkBTþkBT lnZ

	 


¼3
2

N�1ð ÞkBþkBlnZ

, ð18Þ

where ⟨H⟩ is the average vibrational Hamiltonian, F = �kBTlnZ is

the vibrational Helmholtz free energy, Z is the configurational

integral part of the vibrational partition function given by

Z¼ Ð
exp �H=kBTð Þd ΔRf g, and N is the number of nodes. Here, it

should be pointed out that the symbol “Z” in Equation (18) is the

entire partition function and only the vibrational part is used in this

work. When a perturbation is introduced to the force constant of the

spring connecting the ith and jth residues, the change of entropy can

be written as

ΔS¼� ∂S
∂γij

Δγij, ð19Þ

where the negative sign represents the decrease of the force con-

stant, and Δγij is the change of the force constant when a perturbation

is introduced. According to Equation (18), the derivation of the

entropy S with respect to γij is written by34,35

∂S
∂γij

¼� 1
2T

⟨ ΔRið Þ2⟩þ ⟨ ΔRj

� �2⟩�2⟨ΔRi �ΔRj⟩
� �

: ð20Þ

When introducing a mutation to a residue, all the springs connecting

to this residue should be perturbed simultaneously. In this way, the

ΔΔG value caused by a residue mutation is the sum of the binding

free energy changes for the perturbations of all the springs involved

in this residue. In the process of identifying key residue, every amino

acid residue is mutated in the same way described above.

2.3 | Receptor and complex systems

The complex of human TDP-43 and RNA, determined by NMR spec-

troscopy, was obtained from the Protein Data Bank (PDB)38 with PDB

ID 4BS29 which has 20 models and each model has 174 protein resi-

dues and 12 RNA nucleotides. The representative structure with the

average lowest RMSD from the others is used to construct the

ewmENM model of the complex, and that of the protein receptor is

built based on the structure with RNA eliminated from the complex.

3 | RESULTS AND DISCUSSIONS

3.1 | Comparison of experimental MSFs with
theoretical MSFs from ewmGNM

The accurate prediction of residue MSFs provides an effective starting

point to understand the dynamics of biomolecules. For the complex

structure of TDP-43 with target RNA, the optimal ewmGNM model

was constructed via maximizing the PCC between experimental and

theoretical residue MSFs under a set of optimized parameters (see

Section 2), with the results shown in Figure 3. In order to evaluate the

performance of ewmGNM, Figure 3 also shows the corresponding

optimal results from the conventional GNM and pfGNM. For the con-

ventional GNM, three cutoff parameters for protein, RNA and inter-

face regions were systematically searched in the range of [1–25 Å]

with step size 1 Å; for pfGNM, no parameters need to be optimized.

For clarity, only the results corresponding to the protein are shown in

Figure 3. From Figure 3, all the three models obtain a high PCC value.

Compared with the PCC (.81) from the conventional GNM (with

F IGURE 3 Residue mean square fluctuations (MSFs) of TDP-43 in
RNA-bound state calculated by the conventional GNM, pfGNM, and
ewmGNM under the optimal set of parameters. For comparison, the
MSFs from NMR structure ensemble are also shown
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cutoff values 10, 14, and 12 Å for protein, RNA, and interface regions,

respectively) and that (.80) from pfGNM, ewmGNM (η1 = 20, κ1 = 7;

η2 = 13, κ2 = 10, see Figure S2 for kernel functions) achieves a

highest PCC value (.86). The better performance of ewmGNM in flexi-

bility reproducing than the conventional GNM and pfGNM is consis-

tent with our previous results on RNAs and proteins.32,33

From Figure 3, it is worth mentioning that for the loosely packed

segments such as the loops and linker, their MSFs from the conven-

tional GNM and pfGNM are much higher than the experimental data.

For GNM, the main reason lies in the uniform cutoff distance, which is

too small and insufficient to restrict the dynamics of the loosely

packed segments, resulting in their over-high flexibility. For pfGNM,

similarly, the spring constant represented by the inversely second

power of inter-node distance is too small for characterizing the inter-

actions within the loosely packed regions, whereas it is too large for

the tightly folded regions, such as β-sheet segments (Figure 3),

resulting in their over-low flexibility. However, the predicted flexibility

from ewmGNM is in good agreement with the experimental data

regardless of the tightly and loosely packed regions, which mainly

attributes to its consideration of the multiscale effect of inter-residue

interactions through using the sum of multiple kernel functions to rep-

resent the force constant, making up for the deficiencies of the con-

ventional GNM and pfGNM.

3.2 | Effects of RNA binding on the dynamics of
TDP-43

The RNA binding to TDP-43 stabilizes the relative positions between

RRM1 and RRM2 in TDP-43, facilitating its alternative splicing func-

tion exertion.9 In order to explore the effects of RNA binding on the

protein dynamics, we computed (according to Equation (6)) and com-

pared the residue MSFs of TDP-43 in RNA-bound and RNA-free

states, with the results shown in Figure 4. From Figure 4, RNA binding

induces a certain loss of flexibility in some segments including loop1

and loop3 in each RRM, C-terminal, as well as linker residues adjacent

to β5 in RRM1, and β1-3 in RRM2.

Compared with loop1s, loop3s have an evident decrease in flexi-

bility upon RNA binding. Both loop1s and loop3s in RRMs protrude to

RNA, constituting a part of the highly positively charged RNA binding

groove lined with Trp113 (loop1), Lys145 (loop3), Arg197 (loop1), and

Arg227 (loop3)9 which mainly form electrostatic and stacking interac-

tions (such as Trp113-G1, Lys145-G3, Lys145-A6, Arg197-A7, and

Arg227-A7) with RNA, contributing the majority of electrostatic

attraction to TDP-43 binding with RNA.7,8 Loop3s' and loop1s' flexi-

bility losses upon RNA binding, as well as the high enrichments of

positively charged residues in loop3s (4/10 for RRM1 and 2/7 for

RRM2) and loop1s (1/6 for both RRMs) indicate that they are very

critical in attracting RNA, suggesting their important roles in anchoring

RNA into TDP-43 binding groove and in the induced fit in TDP-

43-RNA recognition. Additionally the larger flexibility loss in loop3s

than in loop1s, as well as the more residues and higher enrichment of

positively charged residues in the former than in the latter indicate

that loop3s provide more interactions with RNA than loop1s, consis-

tent with the experimental observation.8 Furthermore from Figure 4,

RRM1 loop3's more extensive flexibility loss than RRM2 loop3's upon

RNA binding suggests that the former contributes more to the inter-

actions of TDP-43 with RNA than the latter, which can partially

explain the experimental finding that RRM1 contributes a major role

in the binding affinity of TDP-43 with RNA compared with

RRM2.15,16

For C-terminal, some residues in it have a flexibility loss upon

RNA binding to some extent, consistent with the NMR experimental

observation that the residues in C-terminal have a large chemical-shift

perturbation upon RNA binding.9 C-terminal constitutes a part of the

binding interface, forming specific hydrogen-bonding interactions with

RNA, such as Asn259-U8, Glu261-U8, and Lys263-G9,18 indicating

that C-terminal is essential for the specific recognition between TDP-

43 and RNA.

For the linker residues (connecting RRM1 and RRM2) adjacent to

β5 in RRM1, they have a certain decrease in flexibility upon RNA bind-

ing. Researchers found that Lys176 (in β5), Leu177 (linker), and

Asn179 (linker) form hydrogen bonds with U4 to read out U4's entire

Watson Crick face.9 Additionally, gel filtration experiment observed

that upon RNA binding, linker forces RRMs to a suitable orientation

and thereby exerts its ability to bind RNA using a specific sequence.11

From above, the linker plays indispensable roles in the conformational

rearrangement of RRM1 and RRM2 and in the specific interactions of

TDP-43 with RNA.

Finally, β1-3 segments in RRM2 have a slight flexibility loss upon

RNA binding. They constitute part of the main binding surface and

form hydrogen-bonding and hydrophobic interactions with RNA, such

as Phe194-U8, Phe221-G9, and Phe229-U8.9 Additionally, the seg-

ments RNP1 and RNP2 mainly located in β3 and β1 and rich in con-

served aromatic/hydrophobic residues form stacking interactions with

RNA, such as Phe194-U8 and Phe231-G9, contributing the specific

recognition of TDP-43 with RNA.14

It should be pointed out that here we assume the protein struc-

ture does not change too much upon RNA binding, which is not the

case in the real situation. We want to know how the results are after
F IGURE 4 Residue mean square fluctuations of TDP-43 in RNA-
bound and RNA-free states calculated by ewmGNM
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the conformational changes are considered? To this aim, we per-

formed an 80 ns MD simulation to model the free state structure by

allowing the protein to relax after removing the RNA (see the MD

simulation procedure in Supporting Information). Figure S4 shows the

change of the RMSD of the backbone atoms of the protein as a func-

tion of time. The system reaches an equilibrium state after 20 ns. The

last equilibrated snapshot was used to build the ewmENM of the free

protein, from which the residue MSFs were obtained, as shown in

Figure S5 with the results from the bound TDP-43 also shown for

comparison. From Figure S5, RNA binding induces a similar or a little

more evident loss of flexibility in the segments including loop1 and

loop3 in each RRM, C-terminal, as well as linker residues, compared

with the result from the pseudo unbound protein without relaxation

(Figure 4), which is understandable as for the former, the conforma-

tional changes are considered in the protein by relaxing it after remov-

ing RNA to some extent.

Additionally, it can be seen that the differences of the segments

mentioned above in flexibility between the two states are not very

big. To detect whether the differences are statistically significant, we

built the ewmENM models for all the 20 available structures in the

NMR ensemble and calculated the residue MSFs of TDP-43 in RNA-

bound and RNA-free states to statistically analyze the effect of RNA

binding on the protein dynamics. Table S1 shows the average MSFs

of several residues of RRM1 loop3 (residues Lys140, Thr141, and

Ser144), linker (residues Asn179 and Glu186), RRM2 loop3 (residue

Pro225), and C terminal (residue His264) that have a certain flexibil-

ity change when RNA binding in the two states and their

corresponding p-values. From the results, the differences of the seg-

ments or residues in flexibility between the two states are statisti-

cally significant.

In summary, RNA binding to TDP-43 makes some segments

including loop1, loop3, C-terminal, linker, and β1-3 in RRM2 lose their

flexibility to some extent due to their formation of electrostatic,

hydrogen-bonding and hydrophobic interactions with RNA. Loop1s

and loop3s play important roles in the electrostatic attraction and

induced fit in TDP-43-RNA interactions, linker and C-terminal are

important for the conformational rearrangement and adjustment and

specific interactions, and β1-3 in RRM2 constituting part of the RNA

binding surface are necessary to the specific recognition of TDP-43

with RNA.

3.3 | Movement coupling between residues in
complex and in receptor TDP-43

In order to detect the functional movement couplings in the complex

of TDP-43 with RNA, we calculated residue fluctuation cross-

correlations according to Equation (14) via ewmANM, with the result

shown in Figure 5A. The optimized ewmANM model has a PCC of .85

(η1 = 22, κ1 = 9; η2 = 11, κ2 = 8, see Figure S3 for kernel functions).

From Figure 5A, for protein, although not very evident, the two RRMs

can be identified with more positive correlations within each RRM

and more negative ones between RRMs. Generally, the positive corre-

lations occur among β1–β3 and between β4 and β5 in each RRM, con-

sistent with their spatial relationship with the former and the latter

stacking together with each other, respectively, which facilitates the

intra-RRM stability. For the interface region between TDP-43 and

RNA, strong couplings mainly occur between some segments in

RRM1 (RRM2) and the front (back) part of RNA, consistent with their

binding positions. The interface residues in loop1s, loop3s, and linker

adjacent to β5 are strongly coupled with their individual interacting

nucleotides in RNA, which is attributed to the formed strong interac-

tions between them.7 Additionally, in each RRM the residues in β1

and β3 constituting parts of the conserved RNP2 and RNP1,

respectively,8 and residues in β4 and β5 in RRM2 are also strongly cor-

related with RNA, respectively, which is due to their participating in

F IGURE 5 Residue fluctuation cross-correlations of TDP-43 in RNA-bound state (A) and RNA-free state (B) calculated by ewmANM
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the formation of binding interface.7,14 The above interactions involved

between TDP-43 and RNA have been mentioned in Section 3.2.

Effects of RNA binding on the dynamics of TDP-43. Generally, the

observation that these residues are strongly coupled with RNA is well

consistent with the result that they have a certain decrease in fluctua-

tion upon RNA binding.

In order to detect the effect of RNA binding on the motional cou-

pling within the protein, Figure 5B shows the fluctuation cross-

correlation of TDP-43 in RNA-free state. Compared with TDP-43 in

RNA-free state (Figure 5B), the protein in RNA-bound state

(Figure 5A) has a stronger and more extensive motional coupling

regardless of the positive and the negative ones. Evidently, generally

the enhanced and extended positive correlations occur among

β-sheets in each RRM, implying that RNA mediates the interactions

among β-sheets (consistent with the binding mode where RNA lies on

the extended surface constituted by β-sheets (Figure 1B), which facili-

tates the formation of intra-RRM hydrophobic core14 and stabilizes

the RRM structures. Additionally, the enhanced and extended cou-

plings between β1-3 in RRM1 and β4-5 in RRM2 just located at

RRM1-RRM2 interface are also observed, suggesting RNA binding

strengthens the inter-RRM interactions, which helps form the hydro-

phobic core composed by β2 and β49 and stabilize the RNA binding

interface, critical for RNA binding efficiency. Still, the couplings

between β1 and β3 in RRM1, β4-5 in RRM2 and the linker are

strengthened, respectively to some extent, hinting the mediating role

of the linker in inter-RRM interactions, which also helps stabilize the

RNA binding interface.

In summary, RNA binding to TDP-43 strengthens the intra-RRM

interactions mainly among β-sheets and the inter-RRM interactions

partially through the linker's mediating role, which facilitates the for-

mation of intra-RRM and inter-RRM hydrophobic cores and the stabi-

lization of RNA binding interface. Additionally, loop1, loop3, and

β-sheet segments provide the main interactions with RNA, presenting

strong dynamical correlations with RNA.

3.4 | Identification of functional key residues in
TDP-43

The ewmGNM-based thermodynamic cycle method (see Section 2)

was used to identify TDP-43 key residues associated with RNA bind-

ing and conformational rearrangement coupled with the binding. Each

residue in TDP-43 was perturbed, and those residues whose muta-

tions induce a larger change in the binding free energy ΔΔG are taken

as the key residues. The results are shown in Figure 6A. Here, the resi-

due with the maximal ΔΔG value in each cluster is defined as the cen-

tral residue of the corresponding cluster. From Figure 6A, 13 residue

clusters are identified whose central residues are Trp113, Asp138,

Ser144, Arg165, Trp172, Asn179, Ser183, Leu188, Glu200, Asp205,

Met218, Lys224, and Lys263, as shown in Figure 6B. Based on the

central residues' positions in the protein structure, the identified key

residues are compared with the available experimental and theoretical

data and their functional information will be discussed in detail below.

3.4.1 | Residues at loop regions

As shown in Figure 6, there are five residue clusters 1, 2, 3, 9, and

12 at loop regions. Clusters 1 and 9 are at loop1s in RRM1 and RRM2,

respectively. For the former, Lukavsky et al. reported that Trp113 and

Leu111 in cluster 1 form stacking and hydrogen-bonding interactions

with G1, and hydrogen-bonding interactions with G4, respectively,

whose substitutions with Ala abolish the capacity of TDP-43 to bind

to RNA.9 The experiment found that Pro112His mutation in cluster

F IGURE 6 Key residue clusters identified by ewmGNM-based thermodynamics cycle method. (A) ΔΔG values in response to residue
mutations with key residue clusters with relatively high ΔΔG values marked by the numbers 1–13. (B) Locations of the central residues for the
13 key residue clusters
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1 moderately reduces the RNA-binding capacity of TDP-43 and the

theoretical study by FoldX indicates the mutation destabilizes the pro-

tein.11 As for cluster 9 at loop1 in RRM2, researchers show that the

site-directed mutagenesis of Glu200 to Ala has a 3-fold decrease in

RNA binding affinity.9 As for loop3 segments, the site-directed muta-

genesis of Leu139 to Ala in cluster 2 located in the binding cleft

between TDP-43 and RNA leads to a 3-fold decrease in affinity of

TDP-43 with RNA.9 RRM1 Lys145 in cluster 3 forms electrostatic and

hydrogen-bonding interactions with G3,11 and its post-translational

acetylation largely inhibits the RNA-binding activity of TDP-43. Still

RRM1 Lys145 in cluster 3 and RRM2 Arg227 in cluster 12 bridging

the two β2-β3 loops, respectively both form strong electrostatic and

stacking interactions with A6 and A7, respectively, thereby largely sta-

bilizing the complex structure.9

Combining the results here and above, loop3s in TDP-43 have a

flexibility loss upon RNA binding to some extent and their key resi-

dues' mutations cause a relatively large change in binding free energy,

which indicates they play important roles in RNA recognition and

interactions through induced fit and forming electrostatic and stacking

interactions with RNA.

3.4.2 | Residues at β-sheets

As shown in Figure 6, there are three residue clusters 4, 5, and 11 at

β-sheets. For Arg171 and Asp174 in cluster 5 which specifically rec-

ognize G3 through hydrogen-bonding interactions, their double sub-

stitutions (Arg171Ala/Asp174Ala) disrupt the specific readout of G3,

leading to a 20-fold reduction in RNA-binding affinity, and the single-

point Arg171Ala mutant leads to a 6-fold reduction in affinity, indicat-

ing their important roles in RNA recognition and binding, and complex

stability.8 Additionally, the NMR study has identified Phe221 in clus-

ter 11 as a key aromatic residue for the direct hydrophobic interaction

with RNA G9, and for its accurately positioning the nucleotide on the

β-sheet surface.9

In a whole, the results above suggest that the key residues identi-

fied in β-sheets play an important role in RNA specific recognition and

binding affinity through forming hydrogen-bonding, hydrophobic, and

stacking interactions with RNA.

3.4.3 | Residues at linker and C-terminal regions

As shown in Figure 6, there are three residue clusters 6, 7, and 8 at

linker and one residue cluster 13 at C-terminal. Linker and C-terminal,

with high flexibility, both make a significant contribution to RNA bind-

ing.9 For linker, it is stabilized by RNA binding and becomes a part of

the binding interface. The NMR experimental study shows that

Leu177 and Asn179 in cluster 6 form hydrogen-bonding interactions

with U4, and the mutation of Asn179Ala affects the binding affinity

to some extent.8 The mutation of Lys181Glu in cluster 6 reducing the

electrostatic potential in nucleotide binding site disrupts RNA bind-

ing.18 As for C-terminal, positively charged Lys263 in cluster 13 forms

strong electrostatic interaction with G9, and Glu261 in cluster

13 forms specific hydrogen bonds with U8 and G9.9 The site-directed

mutagenesis of Lys263 to Glu completely abolishes the RNA bind-

ing.18 Through relaxation experiments, Lukavsky et al. found the resi-

dues in linker and C-terminal have a large chemical-shift perturbation

upon RNA binding, indicating they are essential for RNA binding.9

In short, the residues in linker and C-terminal regions play an

important role in binding recognition dynamics, forming a part of the

binding interface through conformational adjustments, which further

facilitates the specific binding and strengthens the affinity between

TDP-43 and RNA through the formation of electrostatic and

hydrogen-bonding interactions.

Finally, for the residue clusters 4, 8, and 10 (centered at Arg165,

Leu188, and Asp205, respectively), we have not yet found the reports

on their importance for RNA binding. However, cluster 8 is strategi-

cally located at the linker connecting RRMs, and presumably plays an

underlying role in orienting RRMs for RNA binding. For cluster

4 located at β4 that expands the β-sheet surface accessible for RNA

binding as an additional β-sheet in TDP-43 RRMs compared with the

canonical RRM,39 thus it possibly contributes much to the RNA-

binding affinity. For cluster 10 at helix 1 in RRM2, MD simulations

show that helix1 in RRM2 forms long-range contacts with β4,14 which

possibly hints that the identified residues at helix1 would influence

RNA binding through affecting β4 dynamics.

The ewmGNM-based thermodynamic cycle method is efficient

for identifying key residues while MD simulation can provide more

details and server as a validation of the predictions. Next, taking the

identified key residue Lys263 in cluster 13 for example which is not at

the binding interface and whose mutation to Glu is observed experi-

mentally to abolish the RNA binding, we mutated Lys263 to Glu to

analyze the effect of the mutation on the RNA binding through MD

simulation. Besides on the mutant complex, we performed MD simu-

lation on the wild-type one for comparison. The two independent MD

simulations were carried out for 80 ns under an NPT ensemble,

respectively. The MD simulation procedure is similar to that used for

relaxing the protein after removing RNA (see Supporting Information).

Figure S6 shows the changes of RMSDs of backbone atoms of the

two complexes as a function of time, respectively. The two systems

reach an equilibrium state after 40 ns. Next, the Molecular mechanics

Poisson Boltzmann surface area (MM-PBSA) approach was performed

to calculate the binding energies for the two systems. In the MM-

PBSA calculations, we used the CHARMM 36 all-atom force field. A

dielectric constant of 1 was used for the solute and 80 for the aque-

ous solvent, and the ionic strength was set to 0.15 M. The equilibrium

trajectory after 10 ns was used for the calculation. For the binding

free energy calculation, although the relatively good results can be

obtained for some cases of protein–protein and protein–ligand inter-

actions, for the highly charged systems such as protein-RNA/DNA

interactions the results are still not ideal, partial reason for which is

from the inaccurate entropy change calculation.40 Therefore, here

only the binding energy is considered. Table S2 gives the binding

energies and their components including the electrostatic and van der

Waals energies, and polar and nonpolar solvation energies. From
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Table S2, compared with the wild-type complex with binding energy

being �751.64 kcal/mol, the Lys263Glu mutant complex has a much

higher binding energy of �26.97 kcal/mol, which indicates that the

positively charged Lys263 is important for the binding interaction

between TDP-43 and RNA, and the mutation mainly weakens the

electrostatic interaction. From Figure S7 that displays the interfaces

of the two equilibrated complexes, it can be observed that the residue

mutation of Lys263 to Glu has a big effect on the structures of resi-

due segments of RRM1 loop3 and linker that are located at the inter-

face, which further affects the contributions of these residues to the

binding energy as shown in Figure S8 (the binding energy contribution

of per residue in the two states). The above results indicate that the

mutation of residue Lys263 to Glu weakens the interaction between

TDP-43 and RNA through affecting the interface structure. Addition-

ally, in 2021, Zheng et al. used MD simulations to explore the molecu-

lar basis of RNA recognition by TDP-43, and their results indicate that

several residue individual mutations including Asp105, Phe147,

Phe149, and Arg171 destabilize the interface structure and disrupt

RNA-binding activity,41 of which Phe147 and Arg171 are located at

our predicted key residue clusters 3 and 5, respectively. This work is

also a support to our prediction.

4 | CONCLUSION

Transactive response DNA-binding protein 43 (TDP-43), an

alternative-splicing regulator, plays multiple roles in pre-mRNA matu-

ration and microRNA processing through specifically binding to long

UG-rich RNAs. RNA binding causes TDP-43 to undergo a conforma-

tional rearrangement, strengthening the binding affinity between

TDP-43 with target RNA.

Considering the advantage of ewmENM in reproducing function-

related protein dynamics, we extend ewmENM to interpret the effect

of RNA binding on the dynamics of TDP-43. First, we construct the

optimal ENM of the complex with ewmGNM. Compared with the

conventional GNM and pfGNM, ewmGNM achieves an evident

improvement in flexibility prediction with the PCC of the experimental

and theoretical MSFs being .86, higher than .81 and .80 from the con-

ventional GNM and pfGNM, respectively. The advantage of

ewmGNM is mainly attributed to the consideration of the multiscale

effect of inter-residue interactions, which makes its good performance

in flexibility prediction of residues regardless of loosely packed and

tightly folded regions.

Then, the analyses on the effect of RNA binding on protein

dynamics show that generally RNA binding causes a flexibility loss in

loop1s and loop3s to some extent, suggesting their important roles in

the electrostatic attraction for RNA and the induced fit in TDP-

43-RNA recognition. A certain flexibility loss also occurs to linker and

C-terminal, which play important roles in the conformational

rearrangement and adjustment and in the specific binding. Also, β1-3

in RRM2 have a slight flexibility loss, which form part of the RNA

binding surface, important for the specific interactions. Additionally, a

more extensive flexibility loss in loop3 of RRM1 than in loop3 of

RRM2 upon RNA binding, as well as the more residues and higher

enrichment of positively charged residues in the former than in the

latter suggest that loop3 of RRM1 are more important for RNA bind-

ing affinity, which partially explains the experimental observation that

RRM1 contributes more to the interactions with RNA compared

with RRM2.

Additionally, the cross-correlation analyses by ewmANM reveal

that the enhanced and extended movement couplings within TDP-43

occur upon RNA binding, which suggests that RNA binding

strengthens not only the intra-RRM interactions mainly among

β-sheets, facilitating RRM structure stability, but also the inter-RRM

interactions mainly between β1, β3 in RRM1, and β4-5 in RRM2,

important for stabilizing the RNA binding interface. Additionally,

loop1s, loop3s, and β-sheet segments provide the main interactions

with RNA, presenting strong dynamical correlations with RNA.

Finally, we extend the ewmGNM-based thermodynamic cycle

approach to identify the key residues in TDP-43, whose mutations signif-

icantly alter the binding free energy of TDP-43 with RNA. The identified

key residues can be grouped into three parts according to their positions

in the protein structure. The key residues at loop segments rich in posi-

tively charged amino acids and highly flexible mainly contribute electro-

static attractions for RNA and induced fit in TDP-43-RNA interactions.

The residues at β-sheets provide a perfect binding surface for RNA and

generally participate in the direct specific interactions with RNA. Those

at linker and C-terminal with high mobility are dynamically coupled with

RNA binding, important for the conformational rearrangement and

adjustment, as well as for the complex structure stability.

Although based on a coarse-grained elastic network model, ewmENM

approach is featured with the analytical solution and timesaving virtues

compared with atomic MD simulations, and importantly it takes the multi-

scale effect of inter-residue interactions into account, reproducing good

details in protein flexibility prediction. Considering the approach's simplic-

ity and the consistence of the analytical results with experimental data, we

believe that ewmENM and ewmGNM-based thermodynamic cycle

methods represent a promising approach, complementary to the atomic-

level simulations, to investigate the binding and allosteric dynamics of pro-

tein and RNA interactions, which can be readily extended for other macro-

molecular interaction systems.
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